
Explicit 0(h2) Bounds 
on the Eigenvalues of the Half-L* 

By Blair K. Swartz 

0. Summary and Survey. This paper is concerned with obtaining strict upper 
and lower bounds on the eigenvalues of a particular nontrivial convex membrane, 
the half-L, which is fixed or free at the boundary. The upper bound is obtained from 
a matrix eigenvalue calculation; the matrix problem may be regarded as a difference 
scheme although it is derived using piecewise linear functions in a Rayleigh quotient. 
The lower bound is than calculated from the upper bound using an elementary for- 
mula. The validity of this formula is proved by extensions of Weinberger's tech- 
niques [3]. Difficulties encountered in determining similar results for the nonconvex 
L-shaped membrane are indicated. A numerical example illustrates the results. An 
appendix contains some pointwise bounds on normalized eigenfunctions. 

An annotated survey of the literature concerned with estimating the eigenvalues 
of the Laplacian is contained in [4]; many other references are found in [10]. The use 
of piecewise linear functions in variational principles is discussed in [1], [2], [5]; 
piecewise bilinear in [6], [7], [9, pp. 331-334]. A general discussion of Rayleigh-Ritz 
eigenvalues is found in [8]. 

Much of the literature concerned with strict bounds on the eigenvalues seems to 
use the eigenvalues of the discrete Laplacian or a related matrix rather than the 
eigenvalues associated with the Rayleigh-Ritz method. The lower bounds of [19], 
[3], [13], and the simultaneous two-sided bounds in [10] are 0(h) bounds as a result 
of embedding a general region in a union of squares [9, p. 339], [4, p. 30]. It is not 
clear how the lower bound in [14] behaves as h -*0. (See also [4, pp. 30-31].) Other 
results have been asymptotic: the discrete eigenvalue is the continuous one (in 
certain cases) except for a term zyh2 + o(h2), - unknown [4], [9]; a result quite useful 
in extrapolation to zero. 
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1. General Approach, Results, and Notation. We shall be concerned throughout 
with two regions in the plane (Fig. 1). 

The primary interest will be in the lowest nontrivial eigenvalue of two problems: 
I. Au = -Xu in ?, u = 0 on 02 (Sections 2 and 3, two different meshes); and 
II. Au =-Xu in ?, au/azv = 0 on A (Section 4). 
However, the bounds on X are shown to hold for the higher eigenvalues as well 

(Section 5). 
The general approach is a variational one. In each case 

=min ffVw12dA 
w f w 2dA 

where W is a class of continuous, piecewise differentiable functions satisfying the 
boundary conditions. The approximating procedure consists of placing a mesh on 
the region in a particular manner, triangulating it, and considering a class V of con- 
tinuous functions, piecewise linear on the triangles, satisfying the boundary condi- 
tion. If xi are the interior mesh points, each v E V may be represented by a vector 
v = {v(xi) }. We then have, with ffIVv12dA = N(v) = (v, Av), f fv2dA = D(v)= 
(v, Bv); 

< Xh = min 
f 

fVv 2dA nin = min N(v, A v) 
v~ ff v2dA v D (v) v (v, Bv) 

(N and D vary from section to section as the meshes and/or problem vary.) It is 
easily shown that A and B are symmetric positive-definite sparse matrices. (Av, for 
example, will in each case be essentially - h2 Ahv.) The numerical calculation of Xh 

then amounts to solving Av = XhBv, which can be done by successive over-relaxa- 
tion, as indicated in Section 7. 

To obtain the lower bound on X in terms of Xh one shows three things. With u, the 
eigenfunction, normalized so that f f u2dA = 1, define 

u (x) = f fS() udA/h2 

where S(x) is a square of side h centered on x, and set u = {U(xi) }. For Problem I 
it is then shown that 

(1.1) D(u) _ h2(u, u) - h2N(u)/4, 

(1.2) h2(u, u) > 1-h2X/r2, and 

(1.3) N(u) < X. 

As an immediate consequence we have, with c = 1/4 + 1/7r2 and ch2N < 1, 

(1.4) X ? Xh ? X/(1 -_ch2X), 

indicating that Nh -X < 0(h2). Solving (1.4) for N yields the explicit double bounds 

(1.5) Nh/(1 + ch2Nh) ? X ?< Xh. 
Finally, we show the same result holds for the higher eigenvalues, \(k: 

(1.6) Xh /(1 + ch Ahj)) < A < X h,, if ch2N (k) < 1 

For problem II it is necessary to subtract an additional term, h2uo2/4, from (1.1),. 
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where uo is a bound on the normalized eigenfunction in certain subsets of ?. (1.4) 
then becomes 

(1.4a) X < Xh ? X/(1 - ch2 - h2f(, h)/4) gh(X). 

(See Appendix IV, Eq. (IV.2).) Since f(X, h) is increasing in X for each h, g has the 
same property. One then concludes, with X the first nontrivial eigenvalue of problem 
II, 

(1.5a) gh 1(Xh) ? X ? Xh 

gh is easily inverted numerically. The higher eigenvalues may be bounded below by 
inverting a corresponding function (5.1), given upper bounds Xh(, , Xh(k). 

We now turn to particulars. 

2. Au = - Xu, u = 0 on AS. For reasons to become apparent we place a mesh on 
the full L and triangulate it as in Fig. 2. 

h /2 

2 

FIGURE 2 

All v vanish on the boundary and hence are determined by their values on the xi 
(the dots). 

N(v) and D(v) are indicated in Appendix I, where it is also shown that 

(2.1) D (v) ? h2 (v, v) - h2N(v)/4. 
We now substitute the averaged eigenfunction u = { f J'si udA/h2 } I u i }, where 

Si = S(xi). For the time being we assume u(X) is the first normalized eigenfunction 
(eigenvalue) of the full L. To show 

(2.2) h2(u, u) ? 1-h2X/7r2 

we sum the inequality 

(2.21) 2 2 h2( ) 
U 

2dA - h2 | VU12 
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and note the union of the Si is L. 
This last inequality is a result of Weinberger [3, p. 342] and follows from the fact 

that u - ui is orthogonal over Si to all constant functions. Hence, it may be sub- 
stituted in the Rayleigh quotient for the first nontrivial Neumann eigenfunction for 
St, yielding 

2 f fsi IjVu12dA 

h2 (JJsi u2dA -h2Ui2 

which is equivalent to (2.21). 
It remains to show N(u) ? X. 
N(u) may be regarded as composed primarily of sums of squares of horizontal 

and vertical differences of the u(xi). To estimate them, let H be any horizoiltal line 
through the interior mesh points, extending to the boundary (Fig. 3). 

h L S 2///,X2////g X3 v Xn 

h X3 Xg,%| 

FIGURE 3 

Regard the xi in H as ordered 1 < i ? n from left to right. Then set 
n-1 

CH = 2u (xl) + E (u (xs+i) - u (xi)) + 2u (xn). 
i=2l 

Let V be a similar vertical line, and define av similarly. Appendix I shows that N(u) 
? , all I aH + Jall v aV + iU2(X .) where x* is the mesh point NE of the re-entrant 
corner (see Fig. 2). 

Furthermore, let aC be the strip of height h centered on H. Then UaiijC SC = L 
and, similarly, UaVlU Vu = L. 

We now show i ? f frr uxdA. From this it follows that (since the JC are dis- 
joint) Zall H aH rFL ux2dA, and similarly jaI v av _ f f L uy2dA. Hence 

(2.3) N(u) ? X + u2(x,). 
Proof that H,, f fie ux2dA. 

4)1 f>2 ( x) +3 9b4 On n+1 

I x in H 
h h ~~~~~h 

II ~~ I2 I 3 i n 

FIGURE 4 
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With Weinberger [3, p. 343], define pi(x), i = 1, 2, '*,n + 1 as in Fig. 4. 
Observe that IJxl = 1/h. Hence, integrating by parts, 

I dx udx+1uo fd 
'i+1 h -f dh x+1u-i dx i+,ui 

i = 1,2 in . 

Dividing by h, integrating on y with y going from 0 to h on aC, and squaring, we 
have 

(fhf1fhf ldd2 d) - h(Lh -I;+iy 2i+iuxdxdY) 

fhf 

- h o 10 I+1u1 i i+1dA 0ff i+iUX2dA, 

thc last by Schwarz inequality. Since 

fhf &i+1dA =h2 
0 i+1U i 

we have 

{hr 

(U(Xi+l) _U(xi))2 f I cpi+1ur2dA. 
o Ii+luIi 

As for the ends (take the left one), 

IftdI dx = fII= ufldx, 

where we have used the fact that u = 0 at left boundary of aC; i.e., the left end of I,. 
Hence 

2U2(X1) = h2 (j j uX0dA) _ JldA JlUx2dA = f|f | ua2dA. 

Summing, we have, since E 1, CH < f fJc u 2dA. 
We now conclude from (2.1), (2.2), (2.3), with x* as in Fig. 2, 

AX + U2(x ) 

1 - cXh 2-U2(X*)h2/4 

Since U2(x*) is 0(h4'3) for the first eigenfunction of the full L (with unknown con- 
stant), we cannot obtain an explicit lower bound for this region. However, this does 
give an O(h4/3) upper bound on Xh - X, in analogy to that obtained in [11, Theorem 
1, p. 1038], [4, p. 82] for the eigenvalue of the usual discrete Laplacian. 

However, if we consider the first eigenfunction of the half-L, ?; and redefine u to 
be this eigenfunction reflected oddly in the diagonal of L, we have u(x*) = 0. We 
assume u is inormalized over the full L. 

Redefining Xh = minV2 N(v)/D(v), where the v E V2 are antisymmetric in the 
diagonal and vanish on it, we have, by (2.1), (2.2), and (2.3), 

(2.4) X ? Xh < ?X/(1 -ch2X), c = 1/4 + l/7r2. 
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Thus, for h sufficiently small, 1 - ch2Xh > 0, and we may conclude 

(2.5) Xh/(l + cXhh2) < X < Xh, X = 1st eigenvalue of S. 

It is a straightforward extension of these arguments to conclude that the first 
eigenvalue of a horizontally stretched S, approximated by the Rayleigh-Ritz tech- 
nique using similarly stretched triangles of dimension h X k, satisfies 

Xh/ { 1 + c[max (h, k) ]2Xh } ? X _ Xh . 

3. Au = -Xu, u = 0 on c2C; Standard Mesh. We place the standard mesh on 
S and triangulate as in Fig. 5: 

h 

FIGUREF 5 

The quadratic forms N(v) and D(v) have changed (Appendix II), and the rela- 
tions (1.1)-(1.3) must be re-proved. Appendix II shows again, however, that 

(3.1) D (v) ? h2 (V, V) - h2N(v)/4. 
We have difficulty in proving (1.2) because R =Uxi S(xi) #= ?. R is shaded in 

Fig. 6. 

FIGUREF 6 

Let R -f. By (2.21) we have 

h2 (u,U) > f u2dA h ?IuId -1- ~ (ffU2 VIvu2dA 

'ir 

(3.1 ) D (v) _ ~h (v, v -h h(v)/412 

h2(u,~~~~~ dA_J 2A_ 2J Vld 

= 
r 1r 

_ 2(J8d -hJ Vld 
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We now show the term in parentheses is negative. For we observe R is the union 
of four kinds of disjoint regions (Fig. 6): (1) h/2 X h rectangles, (2) h/4 X h/4 
squares, (3) h X h right triangles, (4) h/2-size ?-shaped regions. On each of these 
regions, RI , u vanishes on an appropriate side, enabling one to reflect u negatively 
in this side and to extend its definition to an h X h square on which the extension 
has mean value zero. The argument leading to (2.21) now applies and yields; for 
each Ri, 

fju2dA-2 dA < O 

We conclude that the parenthetical term above is indeed negative, and hence 

(3.2) h2(u, u) > 1 - h2X/ir2 

To prove (1.3) we examine the new numerator. -H may be redefined as 

n-1 

-2(X1) + E (U(Xi+) - U(Xi))2 + U2(Xn) 
i=l 

and av similarly. Appendix II shows that this time N(u) = aE + X av. 

y O 

FIGURE 7 

3C is no longer the union of the S(xi), xi C H. We define new qi (Fig. 8): 

(t)l q62 +3~~~~~~~~~~~0 ?>--( Y) 

h/2 h.y 

I<) Il I2 I n in+I (y) 

FIGURE 8 

N.B.: length (In+,) = y, y E [0, h], and that q0n+? is a function of x and y. We have to 
account mainly for Tt2(xi) and for U2(xn). 

/ dx -/| do f u=41dx, 
ll h I,'Ur, dx uI, 

because u 0 O on the left side of 03C. 
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Hence 

2 fh fu4dA <1 jh f 5d u2~p = 
h 

f u2qdA 
10 (xi 

h2 h20 OIOUIi 11 10 IIOUi 
d 

Similarly, because u 0 on the right side of 05C, 

f dx= f u ?10n+( Y) dx = U|-kn+1(X, y)dx 
ln h InU'n+i(Y) Ax IUIn+i(y) 

and thus 

(X)= ( hU2dxdy 

=< f I | Xn+,(x, y)dxdy (x dxdy 
h2O IUlnl(y) [Uln+i(y)On 

?n+l(X Y)Ux2 dxdy. 
0 IUIn+?i(y) 

The interior part of aH is handled as before; again the O's add to 1 on 3C and 

0II< |f u-2dxdy. 

It should be clear how to define the 0's to verify, similarly, that 

cv ? I Y uy2dxdy. 

Summing, it follows again that 

(3.3) N(u) ? X. 

Hence, with X the first eigenvalue of the S, 

(3.4) X < Xh X/(1 -ch2X), c = 1/4 + 1/7r2. 

For the full L one runs into trouble with the strip 3C in Fig. 9, for u 0 0 on the 
left side of O93C. We have been unable to modify the procedure leading to (3.3) to con- 
clude even that N(u) ? X + 0(h2). 

FIGURE 9 

4. Au -Xu in ?, 3u/9v = 0 on M2. We use a full L as indicated in Figure 10, 
where the level lines of the piecewise linear functions to be used have also been 
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sketched. All functions are assumed symmetric in the diagonal and orthogonal to the 
constant functions. 

h/2 

FIGURE 10 

Appendix III shows two things: if VM = max (jvl at the three enlarged dots in 
Fig. 10), then 

(4.1) D (v) _ h2 (v, v) - h2[N(v) + VM2I/4; 

and that N(v) consists only of a sum of squares of differences of neighboring values 
of v. Thus, if u is normalized over the full L, 

(4.3) N(u) < X 

by the method of Section 2. (Since N(u) contains only squared differences, no infor- 
mation about u on aL is required.) Also by Section 2, 

(4.2) h2(u, u) > 1 - h2X/ir2. 

Appendix IV shows that the mean values of u (over the h X h squares centered 
on the three dots) are bounded by an explicit increasing function of X, f(X, h) (Eq. 
(JV.2)). From this and (4.1)-(4.3) we conclude 

(4.4) X ? XA < X/[1-ch2X-h2f(X, h)/4], c = 1/4 + 1/r2. 

5. The Higher Eigenvalues. The min-max principle is, with E running from 1 
to k on i, 

x (k) = min max f f v E aiw 

wl...wk al...ak .ff (ZaiWi)2dA 

where w* Wk are piecewise differentiable, linearly independent functions over 
the domain which satisfy the boundary conditions. A larger min-max is obtained by 
restricting attention to all sets { v,, * - *, vk } of linearly independent piecewise linear 
functions satisfying the boundary conditions; and an upper bound X (k) results: 
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x(k) < min max fflVZaivi2dA = min max N(Zavt) X(k) 

Vl...vk al ...ak ff (Z aivs)dA vl...vk al...akD (aivi) 
(one notes for the last that v1 ... vk are linearly independent if and only if vi * Vk 

are linearly independent). Xh(k) is also the kth eigenvalue of the problem Av = XBv; 
this can be seen by noting that B-1A is self-adjoint using (v, W)B (v, Bw) and 
applying [20, p. 181]. Now set us = { ffssjui/h2} with ui the ith eigenfunction nor- 
malized so that ff uidA = 1 and orthogonalized so ff umundA = 0 , m # n . 

Under the assumption that u1... uk are linearly independent we have 

(k) < N(Z aiui) 
Xh ? max 

By the previous work in Sections 2 and 3, for each al, **, ak 

N( aiui) < f IlV EI a uil2dA E_ X(__a_i2 

D( ajui) rff (E aiU)2dA - ch2ff 1V E auil2dA 1 -ch2 E Z (i)ai2 

Hence 

(kh) < - maX2l1c2E X(i)ai Xh ? max Z x(a ) 
al.-ak;Zaj2=j ch2 E a 

But 0 < f < fmrax and k > 0 implies max lf/(1 -kf)] = fmnax/(l-1 kfrnax). Hence 

~(k) h(k) < X (k)/( -h2Xk)) X <- Xh -X/ -chX) 

and (1.6) follows. 
Finally, we show that for fixed k, ul Uk * ukare linearly independent as h -O0. For 

suppose E a ui = 0, E a 2 = 1. From (1.1) and the procedures leading to (1.2) 

D(E aiui) ? f f (EaivU)2dA ch 2ff IV Ea usil2dA 
> 1-ch2 X(t)ai2, c = 1/4 + 1/7r2 . 

Let ch2 < 1/X(k). Then D(E a u ) > 0. But D is positive definite, hence E a ui 
# 0, a contradiction of the linear dependence of the ui, i = 1, **, k. 

It is easily verified that the additional term, introduced in the denominators 
when considering the "Neumann" eigenfunctions of Section 4, causes little difficulty, 
and results in 

(5.1) ;<(k) (k) X X (k)/[l - C/2 - /2 E f(XX )j h)/4] = gh(k), X Xk) 

6. Upper Bound Using Standard Matrix Eigenvalues. The usual approach to the 
membrane's eigenvalues is to solve the matrix eigenvalue problem 

(6.1) Av* = Xh*h2V* 

instead of the problem indicated in Section 1 as Av = XhBv. 
Since v* may be substituted in the Rayleigh quotient, we have by (1.1), that 

(6.2) X < N (v*)/D (v*) < N (v*)/[h2 (v*, v*) -h2N (v*)/4] 
(6_ Xh*/(1 - hxh*/4)A 
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giving a strict upper bound on the lowest eigenvalue. For the mesh of Section 3, [4, 
p. 68] shows 

Xh* = X - yh2 + o(h2), h O-> ; 

thus Xh* is an asymptotic lower bound, not a strict lower bound. 

7. A Numerical Example. The lowest eigenvalues of both the 2 and the L, corre- 
sponding to u = 0 on the boundary, were approximated by the Rayleigh-Ritz tech- 
nique using the mesh of Section 3. A suitable generalization of the successive over- 
relaxation technique used by Moler [4, pp. 114-117] was programmed to solve Av = 
XhBv. The Rayleigh quotients were computed in double precision to obtain sufficient 
accuracy in the matrix eigenvalues. Values of 1/h were 8(4)36 and 42 (Table 1). 

TABLE 1 

Rayleigh-Ritz eigenvalues, standard mesh, u = 0 on boundary 

Half-L, ? L 

Upper bound Lower bound Upper bound 
1/h Xh Xh/(1 + ch2Xh) Difference Xh 

8 15.5572882 14.334 1.224 9.9659766 
12 15.3580389 14.804 0.555 9.8028565 
16 15.2879549 14.974 0.314 9.4081708 
20 15.2554144 15.054 0.202 9.7099600 
24 15.2376994 15.098 0.140 9.6921083 
28 15.2270005 15.124 0.103 9.6807234 
32 15.2200476 15.141 0.079 9.6729507 
36 15.2152759 15.153 0.062 9.6673700 
42 15.2105050 15.165 0.046 9.6615029 

TABLE 2 

Previously computed standard eigenvalues, source indicated 

Half-L, 2 (Bowdler & Wilkinson) L (mostly Moler) 

Upper bound 
l/h h* Xh/(1 - h 2Xh*/4) 1/h Xh* 

6 14.8325923 16.536 4 9.64142546 (B&W) 
8 14.9931528 15.926 8 9.69316221 (B&W) 

10 15.0671631 15.657 10 9.68829145 
11 15.0899260 15.576 20 9.66696983 
12 15.1072074 15.515 30 9.65743368 
13 15.1206339 15.467 40 9.65249358 
14 15.1312711 15.430 50 9.64954711 
15 15.1398404 15.399 80 9.64527693 
16 15.1468447 15.375 100 9.64393241 
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The lowest eigenvalue of (6.1) has been computed for the L by Moler [4, p. 124] 
with 1/h = 10(10)100. Bowdler and Wilkinson at the National Physical Laboratory 
calculated the lowest eigenvalue of (6.1) for the ? and the L (unpublished, 1962) with 
1/h = 6(1)16. See also [12, p. 841 ff], where two methods are discussed which sig- 
nificantly improve on the order of convergence to the first eigenvalue of the L 
(Table 2). 

To more easily compare these results, all four sets of eigenivalues were fit, as 
functions of h, by a nonlinear least-squares routine which could handle approxima- 
tions of the form E aihbi, as and bi parameters. The best fits were 

Source Region Fit to Xh = X(h) 
Moler L XL + 2.2h4'3 - 5.2h2 - h3.1 

Author L XL + 2.2h4/3 + 11.8h2 + 11h36 
NPL S XA-13h2+h3 
Author ? X.e + 23h2 - 2h3 

Assuming X known (below), (3.4) predicts a priori an upper bound behaving like 
As + 81h2. X1 was 15.197 for the NPL eigenvalues and 15.1973 for the author's, 
while XL was 9.639724 for both Moler's and the author's eigenvalues. From the 
results for the S it is easily seen that the a posteriori lower bound derived from (3.4) 
behaves like X - 58h2 while the a posteriori upper bound (6.2) behaves like X + 44h2. 

Thanks are due to Connie Luders for preparing the diagrams and to the referee 
for his help, especially with Appendix IV. 

APPENDIX I. Numerator as a sum of squares of differences: 
Notation: + - 2 + means 2[v(right) -v(left)]2 occurs in the numerator. 

122 2 2 2 

4 4 4 4 

3 

1; , - ,.---T.-t2- 

This is easily verified by squaring the (constant) gradient above each triangle, 
multiplying by the area of the triangle, and adding up over the triangles. 

There is no loss in generality in considering the case of the large h shown here and 
in what follows, for the forms do not change with decreasing h. 

All diagrams which follow (in the next two appendices as well as this one) con- 
sider various quadratic forms using the notation to be described niext. 
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Numerator as a quadratic form: 

Notation: 4 means 4 v2(vertex) occurs in the form; 

-2 means -2v(left)v(right) occurs in the form. 

I 2 2- 2 2 2 2 2 

-12 -2 -2 -2 -2 

-42 --2- 4--2- 4--2- 4--2~~ 

-1i2 -2 -2 -2 -2 

42 -2 42 2 42 -2 4 2 

-1 2 

The denominator. If a linear function, P(x), defined on a triangle, T, of base h and 
altitude k, has values a, b, and c above each vertex then 

ff 
P2dA = hk (a2 + b2 + c2 + ab + ac + bc) 

T12 

For example: to find the coefficient of v2 ("SW corner") we examine the contri- 
bution of the six triangles containing that corner (see insert). Hence the denominator 
is h2 (following form)/12: 

4 2 122 2 2 /2 2 2 

11 2 2 2 2 2 2 2 

~42 2 ~6 2- 6 2-6-2 ~6 

2-2 2 2 2 2 2 2 2 

Thus h2(v, v) D(v) + h2(following form)/ 

Thus h2(V, v) =D(v) + h2 (following form)/12: 
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8 -1-72--12~-'- 7 --7 12- 7' 

-11 -2 -2 -2 -2 -2 -2 -2 -2 

~~7t/-2 2-6-2 6 -22-6 6 

I /1 /1 /1 /1 I 
-12 -2 -2 -2 -2 -2 -2 -2 -2 

841- 7i/ 12-1/- 7 ,-~6z/-2/ 
-2 -2 

-72 

This last form is the sum of A + B, where A = E (diagonal differences)2. 

-2 -2 -2 -2 

8i -2 61 -2 6-2-1 6-2- E 6-E' 

-I i- -2 -2 -2 

I I I I 1 
E4--2- 4--2 4-2 4--2 4- 

7i -1 -Ij --2 -2 -2 -2 

B712 1i6l -l7-612-l7-5l -261 
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From the inequality (a - c)2 < 2[(a - b)2 + (b - c)2], or (a - c)2 < (a -d)2 + 
(d - b)2 + (a - b)2 + (b - c)2, A < following form: 

-2--2-4----2-4--2-4- -2-4 

-2 -4- -4 -4 -4 - 

III II1 
?-2 - 4 -2 4 -2 4 -4 - 

-__2--2_ - -4--8---2----6--4-8- 

Hence h2(v, v) < D(v) + h2 (following form)/12: 

I - I- 1- - 1- 

16 - r6 -6 

Ii I I I 1/ 

-31 -6 -6 -6 

- ?-31 -10-2 - -2? -32-L j-^1 6 -1 

2 

_,II}~ ~~ Il ,--4I - I Ij--4j - I I- -41 - I 

-4- -6 -6 -16 -16 1 

II- i -6 12 --6 -1I2 --6 -12 --6 -1S- 2 

-4i -6 -6 -6 -6/ 

-1i-4jIII - 1i-42-ll4--41- 121-6- I 

12 
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Now, adding 2 Ebdry ("boundary differences")2, where a "boundary difference" 
is the difference of values at two neighboring points, each adjacent to the boundary, 
h2(v, v) < D(v) + h2 (preceding form)/12. 

Finally, by adding appropriate squares of "boundary values," we have 

h2(v, v) < D(v) + h2(3 Numerator)/12, or 
D(v) ? h2(v, v) - h2N(v)/4. 

APPENDIX TI. Numerator as a quadratic form. With the notation of Appendix I, 
N(v) is the following form: 

4--2-4---2 -4--2 -4--2-4--2 -4 
I I I I I I / 

-2 -2 -2 -2 -2 
I I I I I a 
4--2-4--2- 4--2- 4-- -2-4 

-2 -2 -2 -2 / 

I I I I 1 
4--2-4--2--4--2-4 7 

__I __ I __ V 

Denominator as a quadratic form. D(v) = h2 (following form)/12: 

I I ''I I I 
6~-2-6-2-6-2-6- 626 

I I I I 

6-2-6--6- 626 

-b - - I i- I- 

6-2-6-2-6-2-6 -6 -6 -6 -6 -6 / 

9--6-I I--6-1i--6 1I - 

_ _ I _ _ I I 
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Hence 

h2(v, v) < D(v) + h2(3 N(v))/12, 

or 

D(v) > h2(v, v) - h2N(v)/4. 

APPENDIX III. In deriving and manipulating the quadratic forms to follow, care- 
ful advantage is taken of the level lines of v(x) (Fig. 10) and the symmetry of v(x) in 
the diagonal of L. 

N(v) is the following form: 

2- -2-3 -2-- -2 - -2-3 -2-2 

-2 -2 -2 -2 -2 

e- 7 --2--- -2-4--2-4--2-3 

D(v) is the following form: 

22 

22 222 2 3 

I I I I I2 

2-6-2-6-2-7-2-6-2- 

I II I 
3X 

3 2 2 2 2 2 2 2 2 3 
I I I1 I2- \\ I2- 

3-7-3-8-2-6-221\ 

Using some care in manipulating D as in Appendix I, one finds h2(v, v) < D(v) + 
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h2 (following form)/12: 

5--6-9--6- 9--6- - -6- 

-6 r -6 -? -6 
9 -6-I 2--6-12--6-I 2--6- 2--6-9 

I6 16 -6 6s _: _ 

7--b6 9- -6-81 2--6-I 2- -6 - I 2-6 L I I I I4 IW 

Thus h2(v, v) < D(v) + h2N(v)/4 + h2V/12, where V is the sum of the squares of 
v at the three heavy dots in Fig. 10. Equation (4.1) follows. 

APPENDIX IV. Bounds on Eigenfunctions. It is easy to find explicit 0(X) bounds 
(X-- co) onmaxD Jul if usatisfies Au = -XuinD, u = 0onOD, IIDU2 = 1. For u 
satisfies an integral equation involving the Green's function of D, from which the 
Schwarz inequality yields max U1f2 X2 max rf G2. Because G is an increasing func- 
tion of D, an explicit bound can be found by surrounding D with a rectangle and ex- 
panding the rectangle's Green's function in terms of its eigenfunctions. This 0(X) 
bound can be improved to max IuI < (4X/r)" 2 by using the Green's function for Au 
- pu, p > 0 and optimizing the resulting bound by choosing p = X. 

That such a bound for a general domain must be O(Xq) (X - oo ) for some q > 1/4 
may be seen by considering the subsequence of normalized eigenfunctions for the 
unit circle: JO( V Xkr)/[ V, iro'( V Xk)], , X = lkth zero of Jo, [15, p. 306], [18, p. 364]. 

When the boundary condition is au/la = 0 (instead of u = 0) the above method 
fails, for the behaviour of the Neumann's function (or even the kernel function) is 
not easily tied to the relation of the domains involved in their definition. Another 
procedure is called for, then, and is based on a mean-value theorem. 

The mean-value theorem, for regular function, u, satisfying Au = -Xu inside a 
circle of radius r, is [16, p. 289, correcting a misprint]: 

r2 
f u(r, O)rdO = 2ru(O, O)rJo0(\/,r) 

Multiplying by Jo(-VXr), integrating from 0 to R, and applying the Schwarz in- 
equality, we have [15, p. 484, 11. 3.34] 

u2(0, 0) _ J fru2rdOdr/F2r J J \2(VXr)rdrl 

(IV. 1 )R 
(V)= JR fA u2rddr/{7rR2[JO2(VXR) + J2 (V/XR)] 

(This bound is sharp for the eigenfunctions of the unit circle mentioned above.) It is 
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of no use, however, to let R -- 0 to obtain a uniform bound on Jul; using the ana- 
logue (for circles) of (2.21) to bound the integral in (IV.1) (in terms of u2(0, 0) and 
X) only yields u2(0, 0) < u2(0, 0) + something. 

To obtain a usable bound, then, of Jul at the three large dots in Fig. 10, let us 
first focus attention on the dot adjacent to the 900 corner. Reflection of the ? (and u) 
three times around the corner defines a new region, ?4, and a new function, u. As- 
suming A' = -XAu in S4 (this assumption is discussed below) one gains the ana- 
lyticity of u in 24 and assures the validity of (JV.1) for any disc contained in ?4. 

Placing (0, 0) at the dot, and recalling u is normalized over the full L, (IV. 1) yields 
u2(dot) _ 2/{7rR2[Jo2( 1V XR) + J12( V XR)] for any R < 1 - h. Under similar as- 
sumptions, u at the other two dots may be bounded by reflecting three or seven 
times, the conclusion being 

(IV.2) max [u2(three dots)] < 4/ { irR2[Jo2( V XR) + J12( V XR)] (IV.2) -~~~~=_f(X, h), R= 1-h. 

We seef(O, h) = 4/[7r(1 - h)2]; and that for fixed h, f = V X), X *o. Further- 
more, since afla -V X = 2irR2Jl2( 1V XR)/( /V Xf2) _ 0 (using Jo'(z) =-Jl(z), Jl'(z) = 
Jo(z) - Ji(z)/z), we seef is increasing in X (for fixed h) and so may be used in obtain- 
ing the lower bound (1.5a). 

Finally, (IV.2) is seen to bound u uniformly in the h X h squares centered on the 
three dots, and thus bounds its average over these squares. 

To show that Af = - X' in ?4, choose a disc D, centered on the 900 corner of S, 
of radius small enough so that the lowest eigenvalue jai of the problem Av = -,4v in 
D, v = 0 on AD satisfies I,u > X. Then the solution u* to Au* = -Xu* in D, u* = u 
on AD, is unique and satisfies &u*/av = 0 on 0? n D. Since ,2, the lowest eigenvalue 
of the problem Av = -A2v in S n D, v = O on AD n , av/av = 0 on O2 n D satis- 
fies /A2 > It > X; U* _ f in S n D, and thus in ?4 n D. Similar arguments show ut 
is regular at every interior point of 24; and that the corresponding reflection around 
the 450 corner is also regular in its domain of eight L's. 

Finally, it is worth pointing out that, had the hypotenuses of the triangles in 
Fig. 10 sloped like those in Fig. 2, it would have been necessary to bound Jul in a 
neighborhood of the 1350 corner; and the reflections would have had to have been 
completed on a Riemann surface (where no mean value theorem is known to the 
author). 

For discussions of pointwise bounds in general see, e.g., [17, p. 101] and its 
references. 
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